
BUSINESS SEGMENT TUBING

SCHOTT DURAN®

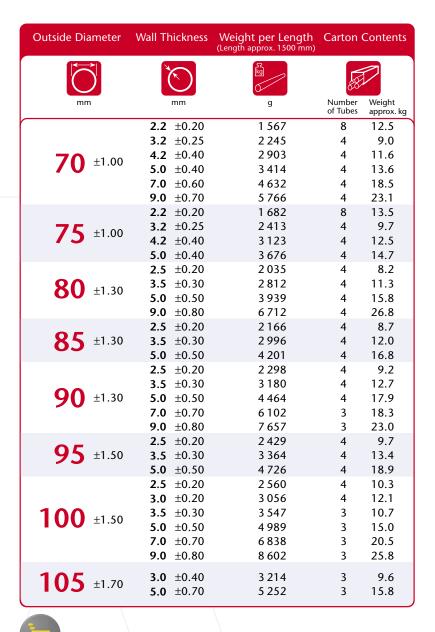
Tubing, Capillary and Rod of Borosilicate Glass 3.3

SCHOTT

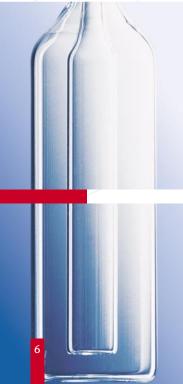
Outside Diameter	Wall Thickness	Weight per Length (Length approx. 1500 mm)	Carton	Contents
mm	mm	g	Number of Tubes	Weight approx.kg
3 ±0.15	0.7 ±0.04	17	941	16.0
4 ±0.15	0.8 ±0.04	27	555	15.0
5 ±0.15	0.8 ±0.04	35	343	12.0
6 ±0.15	1.0 ±0.04	53	245	13.0
	1.5 ±0.10	71	211	15.0
7 ±0.15	1.0 ±0.04	63	190	12.0
	1.5 ±0.10	87	172	15.0
8 ±0.15	1.0 ±0.04	74	149	11.0
	1.5 ±0.10	102	147	15.0
9 ±0.15	1.0 ±0.04 1.5 ±0.10	84 118	119 119	10.0 14.0
10 ±0.15	1.0 ±0.04	95	95	9.0
	1.5 ±0.10	134	90	12.0
	2.2 ±0.15	180	56	10.0
11 ±0.20	1.0 ±0.04	105	86	9.0
	1.5 ±0.10	150	73	11.0
	2.2 ±0.15	203	42	8.5
12 ±0.20	1.0 ±0.04	116	130	15.0
	1.5 ±0.10	165	67	11.0
	2.2 ±0.15	226	42	9.5
13 ±0.20	1.0 ±0.04	126	119	15.0
	1.5 ±0.10	181	55	10.0
	2.2 ±0.15	250	36	9.0

Outside Diameter	Wall Thickness	Weight per Length (Length approx. 1500 mm)	Carton	Contents
mm mm	mm mm	Res of the second secon	Number	Weight
			of Tubes	approx. kg
	1.0 ±0.04	137	110	15.0
14 ±0.20	1.5 ±0.10	197	46	9.0
	2.2 ±0.15	273	30	8.2
4 -	1.2 ±0.05	174	86	15.0
15 ±0.20	1.8 ±0.10	250	56	14.0
- 0	2.5 ±0.15	328	25	8.2
1/	1.2 ±0.05	187	81	15.0
16 ±0.20	1.8 ±0.10	268	49	13.1
	2.5 ±0.15	354	25	8.8
17	1.2 ±0.05	199	75	15.0
17 ±0.20	1.8 ±0.10	287	49	14.0
	2.5 ±0.15	381	25	9.5
10	1.2 ±0.05	212	66	14.0
18 ±0.20	1.8 ±0.10	306	49	15.0
	2.5 ±0.15	407	20	8.1
10	1.2 ±0.05	224	63	14.0
19 ±0.20	1.8 ±0.10	325	42	13.7
	2.5 ±0.15	433	36	15.6
20	1.2 ±0.05	237	55	13.0
20 ±0.25	1.8 ±0.10	344	36	12.4
	2.5 ±0.15	460	20	9.2
22	1.2 ±0.05	262	42	11.0
22 ±0.25	1.8 ±0.10	382	30	11.5
	2.5 ±0.15	512	30	15.4
24 .005	1.2 ±0.05	287	36	10.3
24 ±0.25	1.8 ±0.10	420	25	10.5
	2.5 ±0.15	565	25	14.0
26 ±0.25	1.4 ±0.05	362	30	10.9
40 .25	2.0 ±0.10	504	25	12.6
	2.8 ±0.15	682	12	8.2
28 ±0.25	1.4 ±0.05	391	25	9.8
40 .25	2.0 ±0.10	546	20	11.0
	2.8 ±0.15	741	20	14.8

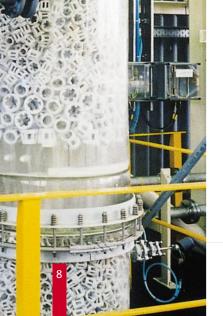
Outside Diameter	Wall Thickness	Weight per Length (Length approx. 1500 mm)	Carton	Contents
			88	
mm	mm	g	Number of Tubes	Weight approx. kg
	1.4 ±0.10	421	36	15.2
30 ±0.40	2.0 ±0.15	588	16	9.4
	2.8 ±0.20	800	16	12.8
	1.4 ±0.10	450	25	11.3
32 ±0.40	2.0 ±0.15	630	16	10.1
5	2.8 ±0.20	859	16	13.8
33 ±0.40	2.0 ±0.15	651	25	16.2
	1.4 ±0.10	479	25	12.1
34 ±0.40	2.0 ±0.15	672	16	10.8
J •	2.8 ±0.20	918	16	14.8
	1.4 ±0.10	509	25	12.6
36 ±0.45	2.0 ±0.15	714	25	18.0
	2.8 ±0.20	976	12	11.7
	1.4 ±0.10	538	20	10.8
38 ±0.45	2.0 ±0.15	756	20	15.0
	2.8 ±0.20	1 035	9	9.4
	1.6 ±0.10	645	16	10.2
40 ±0.60	2.3 ±0.20	911	16	14.6
40 ±0.00	3.2 ± 0.30	1 237	9	11.2
	5.0 ±0.40	1 838	9	16.5
43	1.6 ±0.10	679	16	10.9
42 ±0.60	2.3 ±0.20	959	16	15.3
	3.2 ±0.30	1 304	9	11.7
44	1.6 ±0.10	713	16	11.4
44 ±0.60	2.3 ±0.20	1 007	16	16.0
	3.2 ±0.30	1 371	9	12.4
45 ±0.70	5.0 ±0.40	2 101	9	18.9
	1.6 ±0.10	746	16	11.9
46 ±0.70	2.3 ±0.20	1 056	9	9.5
	3.2 ±0.30	1 439	9	13.0



Outside Diameter	Wall Thickness	Weight per Length (Length approx. 1500 mm)	Carton	Contents
mm	mm	g	Number of Tubes	Weight approx. kg
	1.6 ±0.10	780	16	12.4
48 ±0.70	2.3 ±0.20	1104	16	17.6
	3.2 ±0.30	1 506	6	9.0
	1.8 ±0.15	911	12	10.9
	2.5 ±0.20	1 247	12	15.0
50 ±0.70	3.5 ±0.30	1 709	12	20.5
30 ±0.70	5.0 ±0.40	2 363	6	14.1
	7.0 ±0.60	3 161	6	19.0
	9.0 ±0.70	3 876	6	23.2
F 2	1.8 ±0.15	949	9	8.5
52 ±0.80	2.5 ±0.20	1 300	9	11.7
	3.5 ±0.30	1 783	9	16.0
- 4	1.8 ±0.15	987	9	8.9
54 ±0.80	2.5 ±0.20	1 352	9	12.2
	3.5 ±0.30	1 856	9	16.7
55 ±0.80	5.0 ±0.40	2 626	4	10.5
	1.8 ±0.15	1 025	9	9.2
56 ±0.80	2.5 ±0.20	1 405	9	12.6
	3.5 ±0.30	1 930	9	17.5
	1.8 ±0.15	1 063	9	9.6
58 ±0.80	2.5 ±0.20	1 457	9	13.1
	3.5 ± 0.30	2 004	9	18.0
	2.2 ±0.20	1 336	9	12.0
	3.2 ±0.25	1 910	9	17.2
60 ±0.90	4.2 ±0.40	2 462	4	9.8
OO ±0.90	5.0 ±0.40	2 888	4	11.5
	7.0 ±0.60	3 897	4	15.6
	9.0 ±0.70	4 821	4	19.3
	2.2 ±0.20	1 451	8	11.7
65 ±0.90	3.2 ± 0.25	2 077	4	8.3
UJ 10.90	4.2 ±0.40	2 682	4	10.7
	5.0 ±0.40	3 151	4	12.6



Outside Diameter	Wall Thickness	Weight per Length (Length approx. 1500 mm)	Carton	Contents
mm	mm	g	Number of Tubes	Weight approx. kg
110 ±1.70	3.0 ±0.50 5.0 ±0.70 7.0 ±0.80	3 372 5 514 7 573	3 3 3	10.1 16.5 22.7
115 ±1.70	3.0 ±0.50 5.0 ±0.70 7.0 ±0.80	3 529 5 777 7 940	4 2 2	14.1 11.6 15.9
120 ±1.70	3.0 ±0.50 5.0 ±0.70 7.0 ±0.80 9.0 ±0.90	3 687 6 039 8 308 10 493	4 2 2 2	14.7 12.1 16.6 21.0
125 ±1.70	5.0 ±0.70 9.0 ±0.90	6 302 10 965	2 2	12.6 21.9
130 ±1.80	3.0 ±0.60 5.0 ±0.70 7.0 ±0.90 9.0 ±0.90	4 002 6 565 9 043 11 438	4 2 2 2	16.0 13.1 18.1 22.9
135 ±1.80	5.0 ±0.70 7.0 ±0.90	6 827 9 411	2 2	13.7 18.8
140 ±1.90	3.0 ±0.60 5.0 ±0.70 7.0 ±0.90	4 31 <i>7</i> 7 090 9 779	4 2 2	17.3 14.2 19.6
145 ±1.90	5.0 ±0.70	7 352	2	14.7
150 ±2,00	3.0 ±0.60 5.0 ±0.70 7.0 ±0.90 9.0 ±1.00	4 632 7 615 10 514 13 329	2 2 2 2	9.3 15.2 21.0 26.7
155 ±2.00	5.0 ±0.70	7 877	2	15.8



Outside Diameter	Wall Thickness	Weight per Length (Length approx. 1500 mm)	Carton	Contents
mm	mm	g	Number of Tubes	Weight approx. kg
160 ±2.00	5.0 ±0.70 7.0 ±1.00	8 140 11 249	2 2	16.3 22.5
165 ±2.00	5.0 ±0.70 7.0 ±1.00	8 403 11 617	2 2	16.8 23.2
170 ±2.00	5.0 ±0.70 7.0 ±1.00 9.0 ±1.10	8 665 11 984 15 219	2 2 1	17.3 24.0 15.2
180 ±2.20	5.0 ±0.70 7.0 ±1.00 9.0 ±1.20	9 190 12 720 16 165	1 1 1	9.2 12.7 16.2
190 ±2.30	5.0 ±0.80 7.0 ±1.00	9 716 13 455	1 1	9.7 13.5
200 ±2.40	5.0 ±0.80 7.0 ±1.00 9.0 ±1.20	10 241 14 190 18 055	1 1 1	10.2 14.2 18.1
215 ±2.50	7.0 ±1.10 9.0 ±1.20	15 293 19 473	1 1	15.3 19.5
225 ±2.70	7.0 ±1.10 9.0 ±1.30	16 028 20 418	1 1	16.0 20.4
240 ±2.90	9.0 ±1.30	21 836	1	21.8
250 ±3.00	5.0 ±0.80 7.0 ±1.10 9.0 ±1.30	12 867 17 866 22 782	1 1 1	12.9 17.9 22.8
270 ±3.00	5.0 ±0.80 7.0 ±1.10 9.0 ±1.30	13 917 19 337 24 672	1 1 1	13.9 19.3 24.7

Outside Diameter	Wall Thickness	Weight per Length (Length approx. 1500 mm)	Carton	Contents
			88	
mm	mm	g	Number of Tubes	Weight approx. kg
	5.0 ±0.80	15 492	1	15.5
300 ±3.80	7.0 ±1.20	21 542	1	21.5
	9.0 ±1.40	27 508	1	27.5
215 1200	7.0 ±1.20	22 645	1	22.6
315 ±3.90	9.0 ±1.40	28 926	1	28.9
225	9.0 ±1.40	29 871	1	29.9
325 ±4.00	10.0 ±1.40	33 085	1	33.0

Additional sizes available on request as special production.

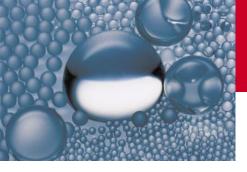
Tubing for Water Level Indicators

Outside Diameter	Wall Thickness	Weight per Length (Length approx. 2000 mm)	Carton	Contents
		Res less than the second secon		
mm	mm	g	Number of Tubes	Weight approx. kg
9.5 ±0.18	1.50 ±0.10	168	100	16.8
11.5 ±0.18	1.50 ±0.10	210	64	13.4
12.5 ±0.18	1.50 ±0.10	231	49	11.3
13.5 ±0.18	1.75 ±0.10	288	49	14.1
14.5 ±0.18	2.25 ±0.15	386	36	13.9
15.5 ±0.18	2.25 ±0.15	418	25	10.4
18.5 ±0.18	2.25 ±0.15	512	25	12.8
19.5 ±0.18	2.25 ±0.15	544	25	13.6
20.5 ±0.25	2.50 ±0.15	630	16	10.1
24.5 ±0.25	2.50 ±0.15	770	16	12.3
29.5 ±0.30	2.75 ±0.20	1 030	9	9.3
34.5 ±0.45	2.75 ±0.20	1 223	9	11.0
39.5 ±0.45	3.00 ±0.20	1 533	9	13.8

SCHOTT DURAN®: Capillary

Outside Diameter	Inside Diameter	Weight per Length (Length approx. 1500 mm)	Carton (Contents
		Re le		
mm	mm	g	Number of Capillaries	Weight approx. kg
4 ±0.20	0.8 ±0.08	40	250	10
5 ±0.20	0.4 ±0.08 0.6 ±0.08 0.8 ±0.08 1.2 ±0.08	65 65 64 62	154 154 156 161	10 10 10 10
6 ±0.20	0.4 ±0.08 0.8 ±0.08 1.2 ±0.08 1.7 ±0.10 2.2 ±0.10 2.7 ±0.10	94 93 91 87 82 75	104 108 110 115 122 133	10 10 10 10 10 10
7 ±0.25	0.8 ±0.08 1.2 ±0.08 1.7 ±0.10 2.2 ±0.10 2.7 ±0.10 3.0 ±0.10	127 125 121 116 110 105	79 80 83 86 91 95	10 10 10 10 10 10
8 ±0.25	0.8 ±0.08 1.2 ±0.08 1.7 ±0.10 2.2 ±0.10 2.7 ±0.10 3.0 ±0.10	166 164 160 155 149 144	60 61 63 65 67	10 10 10 10 10 10
9 ±0.25	0.8 ±0.08 1.2 ±0.08 1.7 ±0.10 2.2 ±0.10 2.7 ±0.10 3.0 ±0.10	211 209 205 200 194 189	47 48 49 50 52 53	10 10 10 10 10 10

Supplies are effected in cartons.


DENSOPACK® packaging upon request (different weight).

All standard dimensions are available at short notice. All carton contents and weights mentioned are approximate. Special sizes deviating from the standard range in outside diameter, wall thickness, inside diameter, tolerance or length can be produced upon request. Tubing in the outside diameter range 8–40 mm can be coated for scratch protection.

Rod

Diameter	Weight/Leng (Length approx. 1	gth (500 mm) (Carton Contents
mm	S g	Numbe	er Weight
7 10 15		of Rods	kg s
3 ±0.15	24	529	12.5
4 ±0.15	42	298	12.5
5 ±0.15	66	183	12.0
6 ±0.15	95	140	13.2
7 ±0.15	129	98	12.6
8 ±0.25	168	80	13.4
9 ±0.25	213	63	13.4
10 ±0.25	263	45	11.8
12 ±0.25	378	35	13.2
14 ±0.35	515	24	12.4
16 ±0.35	672	20	13.4
18 ±0.45	851	20	17.0
20 ±0.45	1 050	16	16.8
22 ±0.50	1 271	12	15.3
24 ±0.50	1512	12	18.2
26 ±0.60	1 775	9	16.0
28 ±0.90	2 059	9	18.5
30 ±0.90	2 363	6	14.2

The Glass

DURAN® is a special borosilicate glass of the first hydrolytic class. Its invention was one of Otto Schott's great achievements. Laboratory and chemical plant technology would be unthinkable without DURAN® tubing, capillary and rod, which provide the basis for custom-made solutions to specific problems.

The Advantages

Products made from DURAN® are wellknown for their stability, good workability and high thermal shock resistance. DURAN® has a very low rate of thermal expansion which makes it an excellent material for laboratory glassware and for use in largescale technological plants in the chemical apparatus industry. Products made from DURAN® are resistant to corrosion and remain absolutely neutral, even to aggressive chemicals, in nearly all fields of chemistry. This gives them a great advantage over other materials. Borosilicate glass is extremely resistant to water, acids, salt solutions, organic substances and halogen. Tubing, capillary and rod of DURAN® also have a high alkali resistance. For physical and chemical properties, please see technical data on the following pages.

The large range of tubing, capillary and rod provides a very high level of precision in all dimensions. These products are also available in the form of thermally prestressed components for use in demanding conditions.

The Quality

As with every Schott-Rohrglas product, DURAN® tubing, capillary and rod are manufactured using the latest technology. Products made from DURAN® Borosilicate Glass 3.3 by Schott correspond to the main international standards (for example, ISO 3585 and ASTM E438 Type I, Class A). The entire production process is electronically controlled and comprehensively monitored by a Quality Assurance System. Schott-Rohrglas is certified according to DIN EN ISO 9001 by TÜV CERT.

The corresponding quality criteria are described in the Technical Terms of Supply on the following pages.

Further Processing

There are widespread fields of application for DURAN® tubing, capillary and rod. The main area of use is in the laboratory and chemical industries, ranging from simple test tubes to filter apparatus and diverse types of cooling and distilling plants.

Tubing, capillary and rod of DURAN® Borosilicate Glass 3.3 are also to be found in large-scale chemical and sewage plants, in pipeline construction, in measuring and controlling techniques, and increasingly in environmental technology, for example in solar collectors and waste gas desulphurization plants. Other technical fields of application are, for example, heat exchangers, flameproof tubes and flowmeters.

In the craft sector this glass is used to produce unique works of art, from a simple candlestick to filigree wine and champagne glasses.

The Manufacturer

Schott-Rohrglas manufactures special glass tubing, capillary and rod in a wide range of glass types and dimensions for a multitude of applications. With an annual production of approx. 65,000 tons, Schott-Rohrglas is one of the leading manufacturers of special glass tubing worldwide. Glass processors in more than 70 countries all over the world appreciate their long-standing experience, know-how and quality. Alongside the most modern melting and production methods for special glass, Schott-Rohrglas also offers the highest standards of precision in the processing sector: one of their particular talents lies in the field of highly-automatic finish grinding for tubing and rod in small diameters. In order to help you find the optimum solution, we would be pleased to work together with you and answer any questions you may have concerning further processing for glass tubing and rod.

SCHOTT DURAN®: Physical and Chemical Properties

Physical Data

Coefficient of mean linear the	rmal expa	insion		
α (20°C; 300°C) acc. to ISO 79	991		3.	3 ⋅ 10 ⁻⁶ K ⁻¹
Transformation temperature T	g			525 °C
Glass temperature at	1013	(annealing po	oint)	560 °C
viscosity η in dPa · s:	107.6	(softening po	oint)	825 °C
	104	(working poi	nt)	1260 °C
Maximum short-time working	temperat	ture		500 °C
Density ρ at 25°C			2.2	23 g ⋅ cm ⁻³
Modulus of elasticity E (Young	's moduli	ıs)	64 · 10	³ N ⋅ mm ⁻²
Poisson's ratio μ				0.20
Thermal conductivity λ_{W} at 90	Thermal conductivity λ_{w} at 90 °C			' · m-¹ · K-¹
Temperature for the specific e	lectrical re	esistance		
of 108 Ω · cm (DIN 52326) t_{k1}	100			250 °C
Logarithm of the electric volur	me resistiv	vity ($\Omega \cdot cm$)	at 250 °C	8
			at 350 °C	6.5
Dielectric properties (1 MHz, 2	25°C)			
Dielectric constant (permittivit	ty) ε			4.6
Dielectric loss factor (dissipation	on factor)	$tan \ \delta$		37 · 10-4
Refractive index ($\lambda = 587.6$ nn	n) n _d			1.473
Stress-optical coefficient (DIN	52314) K		4.0 · 10-6	mm² · N-1

Pressure Resistance of DURAN® Tubing and Capillary

Calculation of pressure resistance (p) for a given Wall Thickness (WT) and a given Outside Diameter (OD):

 $p = \frac{WT \cdot 20 \cdot \frac{K}{S}}{OD - WT}$

Calculation of the Wall Thickness (WT) at a given pressure resistance (p) and Outside Diameter (OD):

$$WT = \frac{OD \cdot p}{20 \cdot \frac{K}{S} + p}$$

OD = Outside Diameter in mm WT = Wall Thickness in mm p = Pressure Resistance in bar $\frac{K}{c} = Resistance$ Parameter in $N \cdot mm^{-2}$

Resistance parameter for DURAN® Borosilicate Glass 3.3: $K/S = 7 \text{ N} \cdot \text{mm}^{-2}$ as per EN 1595 Standard: Pressure equipment made from Borosilicate Glass 3.3: General rules for design, manufacture and testing.

Pressure resistance (p) is also influenced by the following:

- Difference in temperature between inside and outside wall
- Surface Quality
- End Finish
- Observance of Conditions of Installation as per Pressure Vessel Regulations
- Tubing Length

Exact calculations are available on request.

Other points to be considered:

- AD leaflet N 4, edition 9.83: Pressure vessels made of glass, with encl.1, edition 6.85: Evaluation of faults in walls of glass pressure containers
- AD leaflet B 1, edition 6.86: Cylindrical and spherical shells under internal pressure overload

Resistance to Thermal Shock

According to ISO 718, the resistance to thermal shock is the difference in temperature between the hot test sample and the cold water bath (room temperature) at which 50 % of all test samples show a tendency to crack when quickly immersed. Resistance to thermal shock of tubing, capillary and rod is dependent on the wall thickness, the shape and size of the quenched area, the state of the surface, the stress which may be present and the end finish. Fast, uneven heating or cooling can easily lead to breakage as a result of tensile strength. It is recommended not to exceed a temperature difference of 120 °C. For large wall thicknesses, this temperature is limited to lower values. Listed below are some measured values to illustrate the resistance to thermal shock of DURAN® Borosilicate Glass 3.3 tubing and rod. These should be used only as reference values as considerable differences between tubing/rod of the same dimensions are possible.

OD 50.5/WT 5.00 mm: 220 °C

OD 133.0/WT 7.00 mm: 180 °C OD 120.0/WT 8.00 mm: 180 °C

Rod

Diam. 24.0 mm: 140 °C

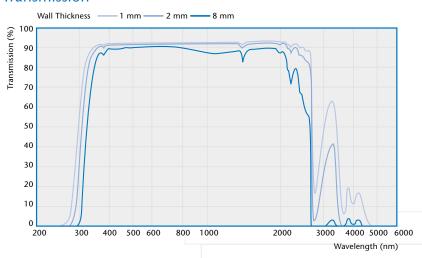
SCHOTT DURAN®: Physical and Chemical Properties

Chemical Composition (main components in approx. weight %)

SiO ₂	B_2O_3	Na ₂ O + K ₂ O	Al_2O_3	
81	13	4	2	

Chemical Resistance

Hydrolytic Class (ISO 719)	HGB 1
Acid Class (DIN 12116)	Class S 1
Alkali Class (ISO 695)	Class A 2


DURAN® Borosilicate Glass 3.3 is highly resistant to water, neutral and acid solutions, concentrated acids and acid mixtures, and to chlorine, bromine, iodine and organic substances. The chemical resistance of this glass is superior to that of most metals and other materials, even when exposed to long processing periods and temperatures above 100 °C.

A slight release of mainly monovalent ions takes place after exposure of the glass to water or acids. A very thin layer of impervious silica gel is subsequently formed on the surface of the glass which in turn slows down further attack. Acid, hot phosphoric acid and alkaline solutions attack the glass surface as a function of concentration and temperature.

Transmission

Hints on Processing

The excellent properties of DURAN® tubing, capillary and rod provide for good workability when forming and cutting the glass with the normal techniques for technical glass. To eliminate temporary stress as a result of the working process, the glass should be well heated to a maximum temperature of 550 °C and kept at this level for a maximum of 30 minutes; for a thinner wall only a fraction of this period is necessary. In order not to affect the chemical stability of the glass, annealing time should be kept as short as possible. We recommend the annealing temperatures given in the table below:

Annealing Schedule

Wall Thickness in mm		Temperature Range:		
	550 to 480 °C	480 to 400 °C	400 to 20°C	
3	12 °C/min	24 °C/min	up to 480 °C/min	
6	3 °C/min	6 °C/min	up to 120 °C/min	
12	0.8 °C/min	1.6 °C/min	up to 32 °C/min	

If an article needs to be annealed several times, the sum of all annealing periods at 550 °C should not exceed 2 hours. DURAN® products can be fused stress-free with borosilicate glasses of the same type and can be processed and annealed at the same temperatures. Printing on DURAN® tubing, capillary and rod can be done with silver copper diffusion and screen-printing dyes.

SCHOTT DURAN®: Technical Terms of Supply

Length

The standard length is:

for Tubing	1500 +10 mm - 0 mm
for Capillary and Rod	1500 ±30 mm
for Tubing for Water Level Indicators	2000 +10 mm - 0 mm

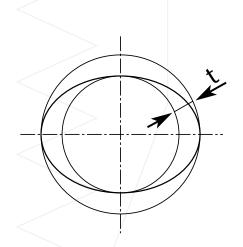
Special lengths of tubing, ranging from 1000 to 7500 mm, are available on request depending on the outside diameter.

Glass cuttings are also available in lengths from 0.3 to 1000 mm (OD max. 40 mm) on request.

Out-of-Round

Out-of-Round according to ISO 1101 is dependent on the Outside Diameter (OD). The following maximum values have been laid down:

Tubing		
OD < 200 mm	$t_{\mbox{\tiny max}}$ 0.7 % of nominal OD	
OD ≥ 200 - 325 mm	$t_{\mbox{\scriptsize max}}$ 1.0 % of nominal OD	
Capillary		
OD < 10 mm	t_{max} 1.0 % of nominal OD	
Rod		
OD < 20 mm	t_{max} 1.0 % of nominal OD	
OD ≥ 20 - 30 mm	t_{max} 1.5 % of nominal OD	


Siding

Siding greater than 12 % of the nominal Wall Thickness within one cross section is not permitted.

Straightness

Values for Straightness according to ISO 1101 are as follows:

OD 3 - < 6 mm	max. 4.0 mm / 1500 mm
OD ≥ 6 - < 30 mm	max. 1.5 mm / 1000 mm
OD ≥ 30 - < 100 mm	max. 2.0 mm / 1400 mm
OD ≥ 100 - < 200 mm	max. 2.5 mm / 1400 mm
OD ≥ 200 mm	max. 3.0 mm / 1400 mm

Stress

	WT < 2 mm	WT 2 – 4 mm	WT > 4 mm
Longitudinal Stress (MPa)	3.0	2.0	1.5
Edge Stress (MPa)	4.0	3.0	2.5

OD = Outside Diameter

WT = Wall Thickness

Stones and Knots

Stones	Stones/kg glass
Size < 0.3 mm	permitted
Size $\ge 0.3 - < 1.0 \text{ mm}$ Size $\ge 1.0 - \le 2.0 \text{ mm}$	max. 2 max. 1
Size > 2.0	not permitted
Knots	Knots/kg glass

The size of the stone or knot is measured by the size of the core.

Airlines

Length

The aggregate airline length is the sum of all airlines \geq 20 mm length.

The permitted aggregate airline length is 0.8 m/10 m tubing.

Airlines < 20 mm (seeds): max. 20/kg glass

Width

Airlines wider than 1.0 mm are not permitted for OD \leq 100 mm.

Airlines wider than 2.0 mm are not permitted for OD > 100 mm.

SCHOTT DURAN®: Technical Terms of Supply

End Finishes and Square-Cut for Standard-Range

Tubing	End Finishing	Square-Cut
OD 3 – 5 mm	untreated	
OD 6 – 38 mm	plain cut and fused**	max. 2.5 mm
OD 40 – 60 mm		
WT ≤ 3.2 mm	plain cut and fused**	max. 2.5 mm
WT > 3.2 mm	plain cut	max. 3.5 mm
OD 65 – 325 mm	plain cut and fused**	OD 65 – 100 mm
(exept WT > 9.0 mm)		max. 3.0 mm
		OD 100 – 200 mm
		max. 4.0 mm
		OD > 200 mm
		max. 5.0 mm

^{**}End finish when fused: bead thickness = approx. 0.1 mm (normal seal)

Special end finishes on request.

Packaging

Standard: Cartons

On request: DENSOPACK®

Glass tubes are layered into bundles with a square or rectangular cross-section. They are packed into the geometrically tightest space and then covered at each end with transparent shrink film. This means that no movement of the tubing is possible during transport, so that the pack is more stable and resilient. The shrink film at each end of the bundle closes each tube and provides the very best protection against contamination.

DENSOPACK® is available up to an outside diameter of 50 mm.

The Product Range for Technical Applications

SCHOTT AR-Glas®

Special glass tubing (Hydrolytic Class 3) for the manufacture of pharmaceutical primary packaging (e.g. for solid oral medicines), for the field of medicine (e.g. disposables and pipettes) and for the cosmetic and food industries, tubes and rod for technical applications (e.g. solar collectors), and for the production of various glassblown products.

SCHOTT CONTURAX®

Special glass profiles for decorative and technical lighting, interior decorating, and use in commercial art; for further processing into perfume vials in the cosmetics industry.

SCHOTT DURAN®

Chemically and thermally highly resistant borosilicate glass tubing, capillary and rod (Hydrolytic Class 1) for a variety of applications, e.g. for the manufacture of glass apparatus, equipment and technical fittings; glass tubing and rod for special technical fields of application (e.g. explosion-proof light fittings, heat exchanger tubing, solar collectors), for processing into vials for medical and pharmaceutical applications and the field of commercial art.

SCHOTT DURATAN®

Thermally prestressed (tempered) DURAN®. Thermal prestressing noticeably improves the shock resistance of the glass.

Main field of application: Explosion-proof light fittings.

SCHOTT DUROBAX®

Chemically highly resistant special glass tubing (Hydrolytic Class 1), especially suited for processing into pipettes, test tubes and glass syringes.

In addition to these glass types we produce approx. 50 other special glasses – especially formulated to help you find solutions to your technical problems.

AR-Glas®, CONTURAX®, DENSOPACK®, DURAN®, DUROBAX®, DURATAN® and ILLAX® are registered trademarks of Schott Group companies.

Subject to technical alteration.

We thank our customers and partners for their kind assistance in providing product samples and photos.

SCHOTT ILLAX®

Chemically highly resistant special glass tubing (Hydrolytic Class 2) for the manufacture of double tip ampoules, vials and other pharmaceutical primary containers. ILLAX for technical application, e.g. for the production of adhesive anchors (glass dowels).

SCHOTT® N16B

Capillary and tubing of special glass type N16B for the manufacture of industrial, clinical and household thermometers. N16B is used for thermometers with a scale up to 430 °C and allows high precision temperature measurement. Schott-Rohrglas manufactures N16B capillary in a variety of designs.

Aluminosilicate Glasses

Special glass tubing which is resistant to high temperatures, is alkali-free and can be fused to molybdenum, used in particular for the production of halogen lamps for automotive and general lighting purposes.

Lead glasses

Electrically highly insulating with a low melting point, special glass tube cuttings are used for the hermetic sealing of electronic components for the production of microdiodes.

*For online orders from outside Europe please contact Schott-Rohrglas GmbH: E-Mail silvia.gonzalvo@schott.com or by phone: +49 (0) 96 33 / 80-2 72